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Extracting ROI-Based Contourlet Subband
Energy Feature from the sMRI Image for

Alzheimer’s Disease Classification
Jinwang Feng, Shao-Wu Zhang, Luonan Chen, and Alzheimer’s Disease Neuroimaging Initiative*

Abstract—Structural magnetic resonance imaging (sMRI)-based Alzheimer’s disease (AD) classification and its prodromal stage–mild
cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the
high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest
(ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of
weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy
(ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image
is firstly segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain,
the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy
(SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90
ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to
classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other
state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between
the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature,
indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image.

Index Terms—Alzheimer’s disease, image classification, regions of interest, contourlet transform, subband energy feature.
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1 INTRODUCTION

W ITH the development of medical imaging tech-
niques and equipments, structural magnetic reso-

nance imaging (sMRI) has become one of main modalities
for brain disease diagnosis in clinics [1], [2], [3]. In recent
years, Alzheimer’s disease (AD) is expected to be a prima-
ry cause of dementia, which is characterized by cognitive
impairment, behavior disorder, memory loss, and decline
of living ability [4], [5], [6], [7], [8], [9]. In 2006, there were
a reported 26.6 million AD cases worldwide, about 56% of
which were at the early stage [10]. When the year 2050, the
population of AD patients is predicted to grow by more
than four-fold to 106.8 million, and one in 85 persons will
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be affected by this disease [11]. Therefore, it is becoming an
urgent issue for clinicians to identify AD and mild cognitive
impairment (MCI, the prodromal stage of AD) patients from
healthy control (HC) subjects, and subsequently delay or
stop its neurodegenerative progression.

To solve the problem of inaccurately identifying AD
patients, a majority of researchers have put their attention
on how to construct a powerful marker in line with sMRI
images [12], [13], [14], [15], [16], [17], [18], [19], [20]. Accord-
ing to those existing works, AD classification methods can
be roughly divided into three categories: voxel (or vertex)-
based [21], [22], [23], [24], [25], regions of interest (ROI)-
based [26], [27], [28], [29], and patch-based methods [30],
[31], [32]. In the voxel-based method, features are simply
extracted based on statistics or selection of voxels. Ju et
al. proposed to use deep learning with brain network and
clinical relevant text information to make early diagnosis of
Alzheimer’s disease [33]. However, the voxel-based features
usually have much higher dimensionality and noisy, which
may not be related to the disease. Thus, the dimensions
of the voxel-based features need be reduced by techniques
such as smoothing [34], downsampling [35] and feature
selection [36] so that the classifiers are more effective and
efficient. In the ROI-based method, a brain sMRI image is
segmented into different tissue ROIs, and then an ROI-based
feature vector or a vector of the relationships between those
ROIs is used to describe the sMRI image in classifying AD
patients. Ahmed et al. developed an automatic classification
framework for AD recognition using hippocampal visual
features [37]. However, spatial features used to represent
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an ROI do not capture direction and multiscale informa-
tion; Moreover, dimensions of the ROI-based features are
relatively high and still need to be further reduced. For
the patch-based method, a tissue patch containing multiple
ROIs is selected to extract spatial features. Li et al. devel-
oped a deep learning method to segment hippocampus from
MRI data for predicting MCI subjects’ progression to AD de-
mentia in a time-to-event analysis setting [38]. Meanwhile,
Khedher et al. presented a new CAD system that allows
early AD diagnosis using tissue-segmented brain images
[39]. It is clear that some important information related to
AD is ignored by the patch-based features in describing the
sMRI image.

From the perspective of image processing, we prefer to
divide AD classification methods into the spatial domain-
based and the transformation domain-based methods [40],
[41], [42]. The former can easily describe an image by
analyzing its structural patterns in the spatial domain,
including voxel-based, ROI-based, patch-based, and deep
learning (DL)-based features. For the DL-based method,
features are automatically extracted from structural patterns
of the sMRI image by different network models [6], [9],
[43], [44], [45]. Liu et al. [44] proposed a multi-model DL
framework based on convolutional neural network (CNN)
for joint automatic hippocampal segmentation and AD clas-
sification with structural MRI data. Wang et al. [45] provided
a new computer-vision based technique to detect AD in
an efficient way using eight-layer CNN with leaky rectified
linear unit and max pooling. For the latter, an image is firstly
transformed by the wavelet, contourlet, or shearlet to obtain
its subbands [46]. The subbands are then used to construct
energy features in the frequency domain. Over the past
decade, there have been few existing features extracted by
the transformation domain-based method for AD classifica-
tion. Nowadays, the transformation domain-based method
gradually appears. For example, Zhang et al. utilized sta-
tionary wavelet entropy to extract the texture features of
an MRI for AD classification [47], and Jha et al. proposed
a novel computer-aided diagnosis (CAD) cascade model to
discriminate patients with AD from healthy controls using
the dual-tree complex wavelet transforms [48]. However the
challenge of the transformation domain-based method is
how to make a trade-off between the feature dimensionality
and the decomposition scale, as well as how to reasonably
segment subbands into different energy regions.

In order to alleviate problems of the curse of dimension-
ality and the segmentation to subband, and extract features
with biological meanings, an ROI-based contourlet subband
energy (ROICSE) feature is proposed to represent the sM-
RI image in the frequency domain for AD classification.
Specifically, a preprocessed sMRI image is firstly segmented
into 90 different ROIs by a constructed brain mask that is
made based on the anatomical automated labeling (AAL)
atlas [49]. Instead of extracting features from these ROIs
in the spatial domain directly, the contourlet transform is
performed on each of the 90 ROIs to obtain their subband-
s, which guarantees that the segmentation to subband is
avoided and features extracted from the subbands have
biological meanings. Next, a subband energy (SE) feature
vector is constructed to capture energy and contour infor-
mation for representing the ROIs. Subsequently, SE feature

vectors of the 90 different ROIs are concatenated to form the
ROICSE feature for representing the sMRI image. Finally,
the support vector machine (SVM) classifier is selected to
categorize subjects with AD, MCI and HC based on the
ROICSE feature. Experimental results show that the ROICSE
approach outperforms six other state-of-the-art methods in
terms of sensitivity, specificity, and accuracy and so on,
demonstrating that energy and contour information of the
ROI are important to capture differences between sMRI
images of the AD and HC subjects. Meanwhile brain regions
related to AD can also be found using the ROICSE feature,
indicating that the ROICSE feature can be a promising
assistant imaging marker for the AD diagnosis via the sMRI
image.

Two main contributions have been made in this s-
tudy. First, a new method is proposed to construct a low-
dimensional representation of the sMRI image for AD clas-
sification, which can extract the frequency domain-based
feature from different brain regions, guaranteeing that the
extracted features have special biological meanings and can
further find brain regions related to AD. Second, different
from the common approaches performing the contourlet
transform on images directly, the proposed ROICSE method
firstly partitions the sMRI image into different ROIs based
on the constructed brain mask in the spatial domain, and
then the contourlet transform is performed on those ROIs
to obtain subbands in the frequency domain. This new
strategy can integrate advantages of both the spatial and
the frequency domain-based techniques, which make sure
that the ROI can be properly represented using features
extracted from the contourlet subbands.

The rest of this study is organized as follows: In section 2,
materials and methods are introduced in detail; Metrics and
experimental results are included in section 3; Discussion is
made in section 4; Finally, a brief conclusion to this study is
given in section 5.

2 MATERIALS AND METHODS

In this section, materials and their preprocessing are intro-
duced firstly, followed by the framework of extracting the
ROICSE feature.

2.1 Materials

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (AD-
NI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), oth-
er biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD).

Nowadays, the sMRI image has been one of the widely
used modalities in clinically distinguishing AD and MCI
from healthy control (HC) subjects. At the clinical diagnosis
stage, patients with MCI can also be divided into subjects
who will convert into AD after 18 months and subjects

Authorized licensed use limited to: University of Southern California. Downloaded on March 23,2021 at 21:12:11 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3051177, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF IEEE TCBB, VOL. *, NO. *, MONTH YEAR 3

TABLE 1
Demographic information of the 880 selected subjects.

Database Type Gender No. Age MMSE
(F/M) (Mn±D) (Mn±D)

ADNI

AD 78/122 200 76.85±7.01 22.15±3.17
MCIc 67/53 120 78.65±9.73 26.38±3.76

MCInc 71/89 160 73.59±7.68 26.21±2.67
MCI 138/142 280 75.76±8.96 26.28±3.17
HC 84/116 200 76.21±4.97 29.09±1.15

OASIS
AD 56/44 100 76.07±7.63 21.18±4.30
HC 63/37 100 60.28±3.79 29.42±0.77

who will remain stable after 18 months. In this study,
these two subcategories are denoted as MCIc and MCInc,
respectively. To evaluate classification performance of the
ROICSE feature, 880 sMRI images, including 300 AD, 120
MCIc, 160 MCInc, and 300 HC, are selected from ADNI
and OASIS databases. More detail demographic information
about these selected sMRI images are summarized in Table
1. MMSE, F, M, Mn, and D in Table 1 are separately abbre-
viations of Mini Mental State Examination, Female, Male,
Mean, and Deviation.

For those selected sMRI images, a four-step prepro-
cessing, including motion correction, registration and skull
strap, segmentation, and smoothing, is performed using
statistic parametric mapping (SPM8) [50] and voxel-based
mapping (VBM8) [51] to remove unrelated tissues and
ensures that a certain brain region of different subjects is
at the same position. After preprocessing steps, the sMRI
image is segmented into 121× 145× 121 gray matter (GM),
cerebrospinal fluid (CSF), and white matter (WM) images,
and the voxel volume is 1.5× 1.5× 1.5mm3.

At the experimental stage, the GM image that is mostly
related to AD is selected to extract the ROICSE feature, and
five data sets are constructed to perform experiments, which
are described as follows:

1) AD/HC: containing 200 AD and 200 HC subjects
from the ADNI database;

2) AD/MCI: containing 200 AD and 280 MCI subjects
from the ADNI database;

3) MCI/HC: containing 280 MCI and 200 HC subjects
from the ADNI database;

4) MCIc/MCInc: containing 120 MCIc and 160 MCInc
subjects from the ADNI database.

5) OASIS: containing 100 AD and 100 HC subjects from
the OASIS database.

Obviously, MCIc/MCInc is a challenging data set whose
subjects are MCI patients.

2.2 Method of extracting the ROICSE feature
For those gray matter (GM) images, we use a subject set
{GM i

t} to represent them, where i ∈ [1, 880] is the i-th
subject, and t ∈ [1, 121] is the t-th scan of the i-th sub-
ject. Before segmenting the GM image into different brain
regions of interest (ROI), a mask need be made based on the
anatomical automated labeling (AAL) atlas.

The single ROI mask set of 90 brain regions is first-
ly made using the AAL atlas. This set is denoted as

{AALp,t}, p = 1, 2, . . . , 90, t = 1, 2, . . . , 91, where p is the
p-th single ROI mask, and t is the t-th scan contained
in the p-th single ROI mask. While the size and voxel
volume of the single ROI mask are 91 × 109 × 91 and
2× 2× 2mm3, respectively, which are inconsistent with the
size and volume of the preprocessed GM images. So co-
registration must be done between the single ROI mask and
the GM image by SPM8. After co-registration, the size and
voxel volume of the single ROI mask become 121×145×121
and 1.5×1.5×1.5mm3, respectively. Therefore, the number
of scans contained in the GM image and the single ROI mask
is the same, and thus the same subscript t is used in sets
{GM i

t} and {AALp,t}. Then a mask containing 90 brain
ROIs and denoted as Maskt can be constructed, which is
formulated by

Mask·(x, y) = p, if AALp,·(x, y) = 1, p = 1, . . . , 90, (1)

where (x, y) is a position in the p-th single ROI mask.
Obviously, x = 1, 2, . . . , 121 and y = 1, 2, . . . , 145.

Based on the constructed brain mask Maskt, we can
segment the GM images in {GM i

t}, into different brain
ROIs. For a GM image of the i-th subject GM i, its p-th brain
ROI can be represented by

ROIip(x, y) =

{
GM i

t (x, y), if Maskt(x, y) = p
0, Otherwise

(2)

where (x, y) is a position in the t-th scan contained in
Maskt and GM i

t , t = 1, 2, . . . , 121, and p = 1, 2, . . . , 90.
For simplicity, we use a set denoted as {ROIip} to represent
the ROIs of all GM images, where i is the i-th subject, and p
is the p-th brain ROI of the i-th subject.

Multiscale analysis is an important transform technique
in the field of image processing [5], [13]. Contourlet and
curvelet are two widely used transform tools, which can
conquer linear singularity and capture intrinsic geometrical
structures of images perfectly [52], [62], [63]. Compared
with the contourlet, though the curvelet can transform an
image into different scales and directions, more redundant
information is generated at the detail scales [62]. In contrast,
as shown in Fig. 1, the contourlet transform is a down-
sampling process, which can avoid information redundancy
to some extent. Meanwhile, except the scale and direction
parameters, the curvelet has a third parameter-location-
needed to be set. Furthermore, it is obvious that Alzheimer

Fig. 1. The contourlet transform with transform scale L=3 and decompo-
sition level S=3.
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is a disease with lesions to multiple brain regions, contours
of the lesion regions are different from those of the healthy
control, thus the contour information of different brain ROIs
can be used as one of the markers for identifying the
AD patient. According to the above facts, the contourlet
transform is more suitable to be selected by the ROICSE
method.

Given the p-th brain ROI of the i-th GM image ROIip, we
use the contourlet with a S-decomposition-level directional
filter bank at each of the L scales to transform the ROIip, that
is, the number of directional subbands at each scale is 2S .
After the contourlet transform on ROIip, we can obtain 2S

directional subbands at each of the L scales, hence there are
2S × L directional subbands and a low-frequency subband
in total. For brevity and simplicity, a set, denoted as {Si

(p,j)},
is used to represent subbands of all brain ROIs of the GM
images in {GM i

t}, where j ∈ [1, 2S × L + 1] is the j-th
subband of the p-th brain ROI of the i-th GM image.

For the subband set {Si
(p,j)}, it is clear that the number

of subbands is determined by L an S whose optimal values
will be estimated by experiments in this study. For the
2S × L + 1 subbands of each brain ROI, the low-frequency
subband is arranged at the first position in the subband
set, and the remaining 2S × L positions of the subband set
are used to arrange the directional subbands. For example,
S2
(3,1) represents the low-frequency subband of the third

brain ROI of the second GM image in {GM i
t}.

Given a low-frequency subband and 2S × L directional
subbands of the p-th brain ROI of the i-th GM image, we
can obtain a low-frequency subband energy feature ei(p,0),
which is represented by

ei(p,0) =

∑M0
x=1

∑N0
y=1 |Si

(p,1)(x, y)|
M0×N0

, (3)

where M0 and N0 are the sizes of the low-frequency sub-
band, and Si

(p,1)(x, y) is a coefficient in the low-frequency
subband, and the directional subband energy feature ei(p,1)
is represented by

ei(p,1) =

∑2S×L+1
j=2

∑M1
x=1

∑N1
y=1 |Si

(p,j)(x, y)|
2S × L×M1×N1

, (4)

where M1 and N1 are the sizes of the directional subbands,
and Si

(p,j)(x, y) is a coefficient in those directional subbands.
According to equation (3) and equation (4), the p-th brain

ROI of the i-th GM image can be represented by a subband
energy (SE) feature vector denoted as

SEi
p = [ei(p,0), e

i
(p,1)]. (5)

By concatenating the SE feature vectors SEi
p, where p =

1, 2, . . . , 90, we can obtain the final ROI-based contourlet
subband energy (ROICSE) feature of the i-th GM image,
which is represented by

ROICSEi = [SEi
1, SE

i
2, . . . , SE

i
90]. (6)

For all sMRI images selected from the ADNI and
OASIS databases in this study, a feature set, denoted as
{ROICSEi}, where i = 1, 2, . . . , 880, is used to describe
them. Obviously the dimension of the ROICSE feature is
90 × 2 = 180, which is reduced to a large extent compared

with the dimension of the GM image. In the subsequent
section, the ROICSE features are used as imaging markers
of the sMRI image for AD classification and its association
analysis.

2.3 Support vector machine classifier

AD classification and association analysis are realized by
the ROICSE feature using support vector machine (SVM)
classifier. In this study, the SVM classifier is provided by
MATLAB software, and we select the radial basis function
(RBF) as the kernel of the SVM classifier, which is formulat-
ed as

k(x1, x2) = exp (−||x1− x2||2

2σ2
). (7)

It is obvious that for the SVM classifier with the RBF kernel,
two important parameters, the window width of the RBF
kernel σ and the penalty coefficient of the SVM classifier
C, need to be estimated based on experiments. σ is used to
control the number of support vectors: with an increase in
σ, the number of support vectors decreases, and vice versa.
Meanwhile, C is used to control the penalty degree to error,
with the increase of C , it easily causes over-fitting, and vice
versa. Therefore, parameters σ and C, need to be estimated
based on experiments carefully.

2.4 Metrics

In order to evaluate the classification performance of the
ROICSE approach, we will perform ten experiments with
ten-fold cross validation on those data sets. For the ten-
fold cross validation experiment, subjects contained in a
data set are randomly divided into ten subsets, one is used
for testing, and the rest is used for training the SVM clas-
sifier. The mean classification accuracy (ACC), sensitivity
(Se), specificity (Sp), precision-recall and receiver operating
characteristic (ROC) curves, and Matthews correlation coef-
ficient (MCC) of the ten experiments on each of those data
sets are used as the final result, which are formulated as
follows:

ACC =
1

10

10∑
i=1

TPi + TNi

TPi + FPi + TNi + FNi
, (8)

Se =
1

10

10∑
i=1

TPi

TPi + FNi
, (9)

Sp =
1

10

10∑
i=1

TNi

FPi + TNi
, (10)

MCC =
1

10

10∑
i=1

TPi × TNi − FPi × FNi√
TPNi

, (11)

where TPi is the number of correctly classified positive
subjects, FPi is the number of incorrectly classified nagative
subjects, TNi is the number of correctly classified negative
subjects, FNi is the number of incorrectly classified posi-
tive subjects, TPNi = (TPi + FPi)(TPi + FNi)(TNi +
FPi)(TNi+FNi), and the subscript i is the i-th experiment
on a data set. Meanwhile, precision predictive value (PPV),
F1 score (F1), false positive rate (FPR) are also listed in

Authorized licensed use limited to: University of Southern California. Downloaded on March 23,2021 at 21:12:11 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3051177, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF IEEE TCBB, VOL. *, NO. *, MONTH YEAR 5

Fig. 2. The framework of extracting the ROICSE feature from the gray matter (GM) image for AD classification.

Table S1 to S5, which can be found in the supplementary
materials.

In summary, for a given sMRI image, after preprocess-
ing, we can directly obtain the GM image. Then the GM
image is segmented into 90 different brain ROIs by a con-
structed brain mask. The contourlet transform is performed
on each of the 90 ROIs to obtain their subbands, and then
a SE feature vector is constructed to describe each of these
ROIs. Subsequently, the SE feature vectors of the 90 ROIs are
concatenated to form the ROICSE feature for being a marker
of the sMRI image. Finally, the ROICSE features are used as
input for the SVM classifier to classify subjects with AD,
MCI, and HC. For the sake of visualization, Fig. 2 shows
the completed framework of the ROICSE approach for AD
classification.

3 EXPERIMENTS

In this section, we will conduct multiple experiments on
AD/HC, AD/MCI, MCI/HC, MCIc/MCInc, and OASIS
data sets using the ROICSE feature. Parameter selection
for the ROICSE-based approach is firstly introduced, fol-
lowed by comparison experiments on the ADNI and OASIS
databases.

3.1 Parameter selection
In the proposed approach, four parameters, the contourlet
transform scale L, the decomposition level of the directional
filter bands S, the window width of the RBF kernel σ, and
the penalty coefficient of the SVM classifier C, are estimated
by experiments on the ADNI database.

To estimate parameters of the contourlet transform L
and S, we set C = 1 and σ = 1 when experiments
are conducted on AD/HC, AD/MCI, MCI/HC, and MCI-
c/MCInc data sets. ACC’s of experiments with different
L and S values on the four data sets are shown in Fig.
3. It is clear from Fig. 3(a) and (b) that with the increase
of L, ACC’s of experiments on the four data sets decrease
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Fig. 3. ACC’s of experiments with different L and S values on the ADNI
database with C = 1 and σ = 1.

rapidly, and with the increase of S, ACC’s are increasing
at first, and then decreasing after S > 3. Obviously, the
ROICSE approach can get the best results overall when
L = 1 and S = 3. Additionally, it can be also seen from
Fig. 1 that with the increase of L, contours of different
brain regions are destroyed but more detail information is
contained in the subbands. Considering that Alzheimer’s
is a disease along with atrophies of multiple brain regions
and the ROICSE feature is constructed with the contour and
energy distribution information of different ROIs, therefore,
we set L = 1 and S = 3 as the optimal estimation values of
the contourlet transform.

To obtain the optimal estimation of the window width of
the RBF kernel σ, we set the penalty coefficient of the SVM
classifier C = 1, and use L = 1 and S = 3 in estimation
experiments of the window width of the RBF kernel σ.
ACC’s of experiments with different window widths of the
RBF kernel σ are given in Fig. 4. As is shown in Fig. 4,
ACC’s on the four data sets AD/HC, AD/MCI, MCI/HC,
and MCIc/MCInc increase rapidly when σ ≤ 0.8, ACC’s
increase slowly when 0.8 < σ < 1.0, however ACC’s on
the four data sets decrease quickly when σ ≥ 1.0. With the
fact of Fig. 4 shown, we set σ = 0.9 (i.e., the mean value
of σ = 0.8 and σ = 1.0) as the optimal estimation of the
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Fig. 5. ACC’s of experiments with different penalty coefficients of the
SVM classifier C on the ADNI database when L = 1, S = 3, and σ =
0.9.

window width of the RBF kernel.
The penalty coefficient of the SVM classifier C is estimat-

ed on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data
sets when L = 1, S = 3, and σ = 0.9. ACC’s of experiments
with different penalty coefficients of the SVM classifier C
on the four data sets are shown in Fig. 5. It can be clearly
seen from Fig. 5 that ACC’s on the four data sets increase
dramatically when C < 15, and ACC’s on the four data
sets gradually become stable after C ≥ 15. Therefore we
set C = 15 as the optimal estimation value of the penalty
coefficient of the SVM classifier based on the fact of Fig. 5
shown.

Finally, ACCs of the ROICSE approach using SVM with
RBF on the ADNI and OASIS databases are shown in Table
2 when L = 1, S = 3, σ = 0.9, and C = 15. Meanwhile,
ACCs of the ROICSE approach using SVM with Polynomial
and Linear kernels are also listed in Table 2. It is obvious
from Table 2 that ACCs of the ROICSE approach using SVM
with RBF are better than those of SVM with Polynomial and
Linear on the two databases. That is why the SVM classifier
with RBF is selected in the ROICSE approach.

3.2 Comparisons

In the following, we will compare the ROICSE approach
with six other state-of-the-art methods on ADNI and OASIS
databases under the same settings when parameters of the
ROICSE approach, L = 1, S = 3, σ = 0.9, and C = 15,
followed by comparisons with published results of machine
learning-based algorithms.

TABLE 2
ACCs of the ROICSE approach using SVM with RBF, Polynomial, and

Linear kernels on ADNI and OASIS databases when L = 1, S = 3,
σ = 0.9, and C = 15.

Databases Data sets RBF Polynomial Linear

ADNI

AD/HC 93.57 91.07 89.43
AD/MCI 82.73 80.59 78.36
MCI/HC 83.13 81.00 79.02
MCIc/MCInc 77.29 75.12 73.21

OASIS AD/HC 82.55 80.17 75.69

3.2.1 Comparisons on the ADNI database
On the AD/HC data set, we evaluate the classification
performance of the ROICSE approach in identifying AD
patients from HC subjects. ACC’s, Se’s, Sp’s, and MCC’s of
the six comparison methods and the ROICSE approach are
listed in Table 3. According to ACC’s shown in Table 3, ACC
of the ROICSE approach is marginally higher than those of
the six state-of-the-art methods, has reached to 93.57%, and
is 0.65% higher than that of the best comparison method.
Additionally, Se, Sp, and MCC of the ROICSE approach
consistently outperform those of the six state-of-the-art
methods and are 95.83%, 91.87%, and 0.85, respectively.
Experimental results on the AD/HC data set demonstrate
that differences between sMRI images of the AD and HC
subjects can be captured by contourlet subbands, and also
testify the rationality of doing the contourlet transform on
brain ROIs.

To perform an extensive comparison with the six state-
of-the-art methods, experiments on the AD/MCI data set
are conducted, and ACC’s, Se’s, Sp’s, and MCC’s of the six
state-of-the-art methods and the ROICSE approach are giv-
en in Table 4. It is clear from Table 4 that ACC of the ROICSE

TABLE 3
Results of the six comparison methods and the ROICSE approach on

AD/HC data set.

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 85.70 77.61 91.28 0.71
Hippo [38] 87.51 87.60 87.42 0.76
TSB [39] 89.96 92.35 86.94 0.79
AUTO [33] 92.92 94.00 89.85 0.85
DTCW [48] 90.16 90.22 90.15 0.80
SWE [47] 92.70 93.67 91.77 0.85
ROICSE 93.57 95.83 91.87 0.85

TABLE 4
Results of the six comparison methods and the ROICSE approach on

AD/MCI data set.

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 71.51 75.94 71.23 0.43
Hippo [38] 79.35 79.44 79.26 0.60
TSB [39] 81.53 83.75 80.07 0.63
AUTO [33] 82.59 84.26 80.11 0.65
DTCW [48] 78.48 75.35 79.98 0.57
SWE [47] 80.49 76.21 80.65 0.61
ROICSE 82.73 84.65 80.80 0.66
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TABLE 5
Results of the six comparison methods and the ROICSE approach on

MCI/HC data set.

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 76.29 72.30 81.53 0.49
Hippo [38] 77.25 95.79 53.23 0.53
TSB [39] 82.41 84.12 80.48 0.63
AUTO [33] 83.09 83.46 82.31 0.65
DTCW [48] 81.94 75.79 84.18 0.61
SWE [47] 80.67 76.79 86.98 0.57
ROICSE 83.13 87.79 76.60 0.65

approach is 82.73%, which is a little higher than the best
comparison method’s 82.59%. Moreover, Se, Sp, and MCC
of the ROICSE approach consistently outperform those of
the six state-of-the-art methods, which are 84.65%, 80.80%,
and 0.66, respectively. Experimental results on the AD/MCI
data set also indicate that the transformation domain-based
tool can be used to analyze the MRI image, and contour
and multiscale information contained in the subband are
captured by the ROICSE feature.

To make a further evaluation, experiments are done on
the MCI/HC data set. ACC’s, Se’s, Sp’s, and MCC’s of
the six state-of-the-art methods and the ROICSE approach
are listed in Table 5. It can be observed from Table 5 that
ACC of the ROICSE approach is 83.13%, this result is
still marginally higher than the best comparison method’s
83.09%. However, Se, Sp, and MCC of the ROICSE approach
are 87.79%, 76.60%, and 0.65, respectively, which are not
more than 95.79%, 86.98%, and 0.65 of the best comparison
methods. Based on Tables 4 and 5, we can find that the
ROICSE approach marginally outperforms the comparison
methods. The reason for this is that subjects with MCI are
anisotropic in their sMRI images, and MCIc subjects have
more AD-like pathological patterns and in contrast, MCInc
subjects have more HC-like pathological patterns.

For MCIc/MCInc, it is a more challenging data set for
the ROICSE approach in classifying MCIc from MCInc
patients, due to the fact that only tiny differences can be
found between their sMRI images. We still give ACC’s,
Se’s, Sp’s, and MCC’s of the six state-of-the-art method-
s and the ROICSE approach, which are shown in Table
6. It is obvious from Table 6 that ACC of the ROICSE
approach is 77.29%, which is 4.43% higher than the best
comparison method’s 72.86%. In addition, Se and MCC of
the ROICSE approach consistently outperforms those of the
six state-of-the-art methods, and reaches 80.36% and 0.61.
Conversely, Sp of the ROICSE approach is lower than that
of the best comparison method. According to experimental
results listed in Table 6, we can prove that patients who
will convert to AD are different from those who will remain
stable in their subband energy distributions. This is why the
ROICSE approach obviously outperforms the six state-of-
the-art methods on the MCIc/MCInc data set.

It is obvious from Tables 3 to 6 that the ROICSE feature
can be relatively accuracy to describe the sMRI images of
subjects with AD, MCI and HC. There are three reasons:
Firstly, a constructed mask is used to segment the GM image
into different ROIs; Secondly, the contourlet transform is

TABLE 6
Results of the six comparison methods and the ROICSE approach on

MCIc/MCInc data set.

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 68.72 67.38 70.69 0.37
Hippo [38] 69.38 69.47 69.29 0.42
TSB [39] 70.11 68.61 74.16 0.41
AUTO [33] 72.32 72.21 73.06 0.46
DTCW [48] 69.21 70.74 67.45 0.39
SWE [47] 72.86 69.55 75.49 0.49
ROICSE 77.29 80.36 74.20 0.61
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Fig. 6. ROC curves of comparison methods and the ROICSE approach
on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Precision-Recall Curve on AD/HC data set

HippoV
Hippo
TSB
AUTO
DTCW
SWE
ROICSE

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Precision-Recall Curve on AD/MCI data set

HippoV
Hippo
TSB
AUTO
DTCW
SWE
ROICSE

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Precision-Recall Curve on MCI/HC data set

HippoV
Hippo
TSB
AUTO
DTCW
SWE
ROICSE

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Precision-Recall Curve on MCIc/MCInc data set

HippoV
Hippo
TSB
AUTO
DTCW
SWE
ROICSE

Fig. 7. Precision-recall curves of comparison methods and ROICSE on
AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.

performed on the ROIs to obtain subbands of the ROI;
Thirdly, the ROICSE feature is constructed with countour
and energy distribution information of the ROI.

Meanwhile, in order to verify accurate representation to
the sMRI image by the ROICSE feature, ROC curves of the
comparison methods and the ROICSE approach are shown
in Fig. 6. It can be seen from Fig. 6 that ROC curves of
the ROICSE approach consistently outperform those of the
six comparison methods on AD/HC, AD/MCI, MCI/HC,
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TABLE 7
Comparisons of our results with published results of machine learning-based methods on AD/HC and MCI/HC data sets.

Method Subjects
AD/HC (%) MCI/HC (%)

ACC Se Sp ACC Se Sp
DMTFS [60] 51AD+99MCI+52NC 87.30 88.40 86.20 68.20 76.90 51.10
LBFE [61] 51AD+99MCI+52NC 83.10 80.50 85.10 73.60 75.30 69.70
MKMFA [7] 192AD+397MCI+229NC 88.60 85.70 90.40 71.90 79.00 60.70
DLASAE [9] 65AD+169MCI+77NC 87.80 88.60 87.20 76.92 74.29 78.13
VGGNet [6] 97AD+233MCI+119NC 84.70 77.30 90.80 70.90 81.90 65.20
DenseNet [44] 97AD+233MCI+119NC 88.90 86.60 90.80 76.20 79.50 69.80
ROICSE 200AD+280MCI+200NC 93.57 95.83 91.87 83.13 87.79 76.60

and MCIc/MCInc data sets, which are closer to the upper
left of the axes. Additionally, precision-recall curves of the
ROICSE approach on AD/HC, AD/MCI, MCI/HC, and
MCIc/MCInc data sets are also given to evaluate the per-
formance of the ROCCSE feature extracting model. As Fig.
7 shown, precision-recall curves of the ROICSE approach
also consistently outperform those of the six comparison
methods, which are closer to the upper right of the axes.
Experimental results on the ADNI database prove that the
ROICSE approach outperform the six comparison method-
s in terms of classification and ROC and precision-recall
curves.

In recent years, machine learning-based systems, espe-
cially the deep learning (DL)-based ones, have achieved sig-
nificant performance for AD classification. Hence, we also
consider quantitatively comparing results of the ROICSE
approach with some recent learning-based methods pub-
lished on AD/HC and MCI/HC data sets, including the
conventional learning-based methods(DMTFS [60], LBFE
[61], MKMFA [7]) and the DL-based methods(DLASAE [9],
VGGNet [6], DenseNet [44]). Results and experimental set-
tings obtained from their original papers are directly listed
in Table 7 because the experiments are performed under
different conditions. It is obvious from Table 7 that the
ROICSE approach can more accurately identify AD patients
from HC individuals than those DL-based methods. One
reason is that for the DL-based methods, the input layer
contains more than ten thousand nodes because of the
high dimensionality of the sMRI image, causing a huge
number of parameters to DL framework, but samples can
be used to train network architecture are small. So, the DL-
based features cannot accurately represent the sMRI image.
Furthermore, the sMRI image contains a lot of redundant
information such as the black background; therefore the
useful information may not be dominant in the extracted
feature, which is another reason that makes the DL-based
feature with relatively low discrimination.

3.2.2 Comparisons on the OASIS database
For validating generalization ability of the ROICSE ap-
proach, experiments on OASIS data set are conducted to
compare the ROICSE approach with the six state-of-the-art
methods when parameters of the ROICSE approach, L = 1,
S = 3, σ = 0.9, and C = 15. ACC’s, Se’s, Sp’s, and MCC’s
are listed in Table 8. It is can be seen from Table 8 that
ACC, Se, Sp, and MCC of the ROICSE approach consistently
outperform those of the six comparison methods, which are

TABLE 8
Results of the six comparison methods and the ROICSE approach with

L = 1, S = 3, σ = 0.9, and C = 15 on OASIS data set.

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 76.40 78.27 74.53 0.37
Hippo [38] 78.60 80.40 76.80 0.38
TSB [39] 79.55 81.70 77.40 0.42
AUTO [33] 81.27 83.04 79.50 0.62
DTCW [48] 80.74 82.99 78.49 0.60
SWE [47] 81.15 83.15 79.15 0.62
ROICSE 82.55 84.80 80.30 0.64

82.55%, 84.80%, 80.30%, and 0.64, respectively. Experimen-
tal results on the OASIS database further demonstrate that
energy distribution and contour information of the ROI can
be used as features for representing the sMRI image, and
the ROICSE feature can be regarded as a promising imaging
marker for identifying AD patients.

Comprehensive experimental results demonstrate that
the ROICSE approach outperforms the six state-of-the-art
methods and may be an useful assistance in the clinical
AD diagnosis via sMRI images. Furthermore, results of the
ROICSE approach indicates that the transformation domain-
based tool can be introduced to analyze sMRI images for AD
classification. Finally we also give the mean running time
(MRT, in seconds) of the ROICSE method on MCIc/MCInc
data set in identifying 160 subjects. The program runs on
Matlab R2017a and computer with Intel(R) Core(TM) i7-
4700 3.40GHz CPU 64bit system. MRT of extracting the
ROICSE feature from the GM image is 1.4431s, MRT of
classifying a subject using the ROICSE feature is 0.0028s,
and MRT of the proposed method categorises a subject is
1.4459s. Obviously, the ROICSE feature extraction is time-
consuming in the ROICSE method, but it can be accepted
to identify a subject using the ROICSE feature within two
seconds.

4 DISCUSSION

AD has been a common cause of dementia in recent years,
mainly destroying brain neurons of patients [53], [54], [55].
In this section, we will find those brain ROIs related to
AD by multiple experiments. In the ROICSE approach,
different brain ROIs are represented by contourlet sbubband
energy features, which are used to construct the ROICSE
feature, and therefore we can tell which brain ROI plays an
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Fig. 8. ACC’s of the ROICSE feature with one ROI removed and the reference on AD/HC data set. The serial numbers from 1 to 45 in x-axial are
the removed brain ROIs, and the serial number 46 in x-axial represents the reference.
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Fig. 9. ACC’s of the ROICSE feature with one ROI removed and the reference on AD/MCI data set. The serial numbers from 1 to 45 in x-axial are
the removed brain ROIs, and the serial number 46 in x-axial represents the reference.

important role in AD classification by exclusion. Due to the
fact that the human brain is symmetric and a tissue region
is represented by two brain ROIs located in different hemi-
sphere [56], [57], so a brain can be essentially represented by
45 tissue regions. Names of the 45 ROIs are listed in Table
S6 put in the supplementary materials. In the following,
experiments to find ROI related to AD from the 45 brain
ROIs are conducted on AD/HC, AD/MCI, MCI/HC, and
MCIc/MCInc data sets, and the ROICSE feature is used as a
reference, which means that a brain ROI makes the positive
contribution to ACC in AD classification when ACC of the
ROICSE feature with the ROI removed is lower than the
reference, and vice versa.

To research the problem of which brain ROIs play a
dominant role in classifying AD patients from HC subjects,
experiments with one ROI removed from the ROICSE fea-
ture are performed on the AD/HC data set. ACC’s of the
ROICSE feature with one ROI removed and the reference
on the AD/HC data set are shown in Fig. 8. It is clear
from Fig. 8 that not all the brain ROIs are important in
AD and HC classification. Most of the 45 brain ROIs make
positive contributions to improving the ACC, some of the
45 brain ROIs make negative contributions to the ACC,

three of the 45 brain ROIs do no-contributions to ACC,
and ACC of the ROICSE feature-based approach changes
from 92.97% to 93.83% on the AD/HC data set. The first
ten positive brain ROIs includes 7 (inferior frontal gyrus
triangular), 8 (inferior frontal gyrus orbital), 12 (superior
frontal medial), 15 (Insula), 22 (calcarine fissure surrounding
cortex), 28 (fusiform gyrus), 34 (precuneus), 35 (paracentral
lobule), 38 (lenticular nucleus pallidum), and 43 (middle
temporal gyrus). Brain ROIs such as 13 (superior frontal
gyrus medial orbital), 16 (anterior cingulate paracingulate
gyri), 25 (superior occipital gyrus), 31 (inferior parietal gyri),
and 39 (thalamus) all make negative contributions to ACC in
AD and HC classification. In addition, three brain ROIs do
no-contributions to the ACC, which are 24 (lingual gyrus),
27 (inferior occipital gyrus), and 29 (postcentral gyrus).
Those results show that multiple brain regions have been
affected by this disease, and indicate that feature selection
is needed in extracting energy information from the brain
ROIs.

For the AD/MCI data set, experiments with one brain
ROI removed from the ROICSE feature are also performed
to research the problem of which brain ROI plays a domi-
nant role in classifying AD from MCI patients. ACC’s of the

Authorized licensed use limited to: University of Southern California. Downloaded on March 23,2021 at 21:12:11 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3051177, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF IEEE TCBB, VOL. *, NO. *, MONTH YEAR 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

The serial number of ROI removed from the ROICSE feature

81.6

81.7

81.8

81.9

82

82.1

82.2

82.3

82.4

82.5

82.6

82.7

82.8

82.9

83

83.1

83.2

83.3

A
C

C
(%

)

Fig. 10. ACC’s of the ROICSE feature with one ROI removed and the reference on MCI/HC data set. The serial numbers from 1 to 45 in x-axial are
the removed brain ROIs, and the serial number 46 in x-axial represents the reference.
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Fig. 11. ACC’s of the ROICSE feature with one ROI removed and the reference on MCIc/MCInc data set. The serial numbers from 1 to 45 in x-axial
are the removed brain ROIs, and the serial number 46 in x-axial represents the reference.

ROICSE feature with one ROI removed and the reference are
given in Fig. 9. We can tell from Fig. 9 that not all brain ROIs
are important in AD and MCI classification, most of the 45
brain ROIs make negative contributions to ACC, the number
of brain ROIs doing positive contributions to ACC is less
than half of the total, and the ACC interval of the ROICSE
approach is 81.80%–84.00% on the AD/MCI data set. Specif-
ically, 3 (superior frontal gyrus orbital), 5 (middle frontal
gyrus orbital), 6 (inferior frontal gyrus opercular), 8 (inferior
frontal gyrus orbital), 17 (median cingulate paracingulate
gyri), 18 (posterior cingulate gyrus), 28 (fusiform gyrus), 40
(heschl gyrus), 41 (superior temporal gyrus), and 43 (middle
temporal gyrus) are the first ten brain ROIs which make
more positive contributions to ACC. The no-contribution
brain ROI is null, which means that the 45 brain ROIs are
divided into two classes. According to the number of brain
ROIs making negative contributions, it demonstrates that
most of the 45 brain ROIs between AD and MCI patients
have the same degree of lesion.

For the MCI/HC data set, experiments with one brain
ROI removed from the ROICSE feature are also performed
to find brain ROIs related to AD in classifying MCI patients
from HC subjects. ACC’s of the ROICSE feature with one

ROI removed and the reference are shown in Fig. 10. In
contrast to Fig. 9, it can be seen from Fig. 10 that still not
all brain ROIs are important in MCI and HC classification,
but most of the 45 brain ROIs make positive contributions
to ACC, and ACC of the ROICSE approach changes from
81.71% to 83.15%. The first ten positive brain ROIs are 1
(precentral gyrus), 6 (inferior frontal gyrus opercular), 10
(supplementary motor area), 17 (median cingulate paracin-
gulate gyri), 19 (hippocampus), 22 (calcarine fissure sur-
rounding cortex), 23 (cuneus), 32 (supramarginal gyrus),
35 (paracentral lobule), and 43 (middle temporal gyrus),
respectively. However, only 29 (postcentral gyrus) and 31
(inferior parietal gyri) contributes to ACC negatively and 12
(superior frontal medial) does no-contributions to ACC. As
it describes, MCI, the prodromal stage of AD, has caused
lesions of multiple brain regions which make a large differ-
ence between sMRI images of MCI and HC subjects. Where-
as, contours of brain ROIs between MCI and HC subjects
have small changes, but detail information contained in the
ROIs is largely different, so ACC of the ROICSE approach is
very little affected by those negative brain ROIs.

For the MCIc/MCInc data set, experiments with one
brain ROI removed from the ROICSE feature are also per-
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Fig. 12. First ten positive brain ROIs in classifying subjects with AD, MCI
and HC on four data sets. The first row is on AD/HC data set, the second
row is on AD/MCI data set, the third row is on MCI/HC data set, and the
last row is on MCIc/MCInc data set.

formed to find brain ROIs related to AD in classifying MCIc
and MCInc patients, and ACC’s of the ROICSE feature with
one ROI removed and the reference are shown in Fig. 11.
It is observed from Fig. 11 that again not all brain ROIs are
important in MCIc and MCInc classification, the 45 brain
ROIs are relatively and evenly classified into the positive-
contribution and the negative-contribution classes, and the
ACC interval of the ROICSE feature based approach is
76.03%–78.76%. Clearly, the first ten positive brain ROIs are
6 (inferior frontal gyrus opercular), 9 (rolandic operculum),
10 (supplementary motor area), 13 (superior frontal gyrus
medial orbital), 19 (hippocampus), 29 (postcentral gyrus), 30
(superior parietal gyrus), 36 (caudate nucleus), 37 (lenticular
nucleus putamen), and 39 (thalamus), respectively. For the
negative-contribution brain ROIs, 2 (superior frontal gyrus),
15 (insula), and 42 (temporal pole superior temporal) are
remarkably significant to improve ACC, in other words,
these three brain ROIs are almost no difference between
sMRI images of MCIc and MCInc subjects.

According to the four leave-one-ROI-out experiments,
we can find that different brain ROIs play different roles in
classifying subjects with AD, MCI, and HC [58]. For some
brain regions such as 6 (inferior frontal gyrus opercular), 28
(fusiform gyrus), and 29 (postcentral gyrus), they make pos-
itive contributions to ACC in AD classification. However,
other brain regions, such as 19 (hippocampus) and 43 (mid-
dle temporal gyrus), make positive contributions to ACC in
AD and MCI classification, in contrast, they make negative
contributions to ACC in MCIc and MCInc classification [59].
Therefore, the selection to brain ROIs must be done before
extracting energy features from their directional subbands,
so that a more powerful imaging marker can be constructed
to identify subjects with AD, MCI, and HC. For clarity and
visualization, Fig. 12 illustrates the coronal, sagittal and
axial views of the first ten positive-contribution brain ROIs
that are important tissues related to AD in classification.

5 CONCLUSION

In this study, we propose an approach to perform AD clas-
sification by extracting the regions of interest (ROI)-based
contourlet subband energy (ROICSE) feature. Specifically,
the sMRI image, after preprocessing, is firstly divided into

90 different ROIs by a constructed brain mask. Instead of
extracting features from the brain ROIs in the spatial do-
main, the contourlet transform is performed on these ROIs
to obtain their subbands, and then subband energy feature
vectors of different brain ROIs are concatenated to form the
ROICSE feature for representing the sMRI image. Finally,
results of SVM-based AD classification on six data sets show
that the ROICSE approach outperforms six other state-of-
the-art methods. However, experiments to find brain ROIs
related to AD indicate that not all brain ROIs are important
for classifying subjects with AD, MCI, and HC. Thus, feature
selection is needed to construct a powerful imaging marker.
In our future work, we will model associations between
different brain regions in frequency domain so that those
brain ROIs mostly related to AD can be selected for AD
classification.
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